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We explore two phenomenological approaches leading to systems of coupled 
Cahn-Hilliard and Cahn-Allen equations for describing the dynamics of 
systems which can undergo first-order phase separation and order-disorder 
transitions simultaneously, starting from the same discrete lattice free energy 
function. In the first approach, a quasicontinuum limit is taken for this discrete 
energy and the evolution of the system is then assumed to be given by gradient 
flow. In the second approach, a discrete set of gradient flow evolution equations 
is derived for the lattice dynamics and a quasicontinuum limit is then taken. We 
demonstrate in the context of BCC Fe-AI binary alloys that it is important that 
variables be chosen that accommodate the variations in the average concentra- 
tion as well as the underlying ordered structure of the possible coexistent phases. 
Only then will the two approaches lead to roughly the same continuum descrip- 
tions. We conjecture that in general the number of variables necessary to 
describe the dynamics of such systems is equal to N~ + N_, - 1, where N~ is given 
by the dimension of the span of the bases of the irreducible representations 
needed to describe the symmetry groups of the possible equilibrium phases and 
N2 is the number of chemical components. Nt of these variables are nonconser- 
ved, and the remaining are conserved and represent the average concentrations. 
For the Fe-AI alloys this implies a description of one conserved order 
parameter and one nonconserved order parameter. The resultant description is 
given by a Cahn-Hilliard equation coupled to a Cahn-Allen equation via the 
lower-order nonlinear terms. The rough equivalence of the two phenomenologi- 
cal methods adds credibility to the validity of the resulting evolution equations. 
A similar description should also be valid for alloy systems in which the struc- 
ture of the competing phases is more complicated. 
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1. I N T R O D U C T I O N  

Our goal is to develop a description for the evolution of coexistent phases 
in alloy systems that exhibit simultaneous phase separation and one or 
more order~lisorder transitions, leading to a variety of symmetries at a 
local level. At least two length scales are necessary to describe the composi- 
tion variations, one on an atomic scale in the ordered domains, and the 
other on the scale of distances between phase and domain boundaries. 
Thus, it is apparent that it is not reasonable to expect to find a continuum 
description based on the mean concentration as the sole dominant variable. 
We discuss in depth the various problems which arise in the development 
of these equations, with the long-term aim of facilitating the development 
of similar systems of equations that should be appropriate for more com- 
plicated contexts. 

We treat in detail the case of Fe-AI binary alloys near the tricritical 
point where two phases differing in average composition can coexist in 
equilibrium, one ordered (occurring as domains of two variants) and one 
disordered. This may be modeled by assuming that atoms in Fe-A1 alloys 
occupy points of a BCC lattice in which the neighbor interactions are 
"antiferromagnetic" and next-nearest-neighbor interactions are "ferro- 
magnetic," or more simply that nearest neighbors prefer to be different 
species, leading to ordering, and next nearest neighbors prefer to be the 
same. Two phases arise in nonstoichiometric alloys because this next- 
neighbor condition causes the minority atoms to cluster into second- 
neighbor positions that form a primitive cubic sublattice, leading to 
ordered regions in which the concentration of minority atoms is raised, 
reaching 50% stoichiometry in the 0 K limit. The ordering splits the BCC 
lattice into two sublattices with different occupation probabilities; this 
prototype for this structure is CsCI, and the Strukturbericht designation is 
B2. The excess of the major component is expelled from these ordered 
regions and forms a relatively pure phase, in which at low, but nonzero, 
temperatures there are some stragglers of the minor component in disor- 
dered positions. 

One option is to work with a discrete description for the dynamics of 
these systems. Such an approach has been explored by Richards ~'~ and 
more recently by Cahn et  al. ~2~ Indeed, the classical statistical mechanics 
approach to the equilibrium properties of such systems has a discrete free 
energy as its starting point. The advantages of a continuum description for 
the dynamics of such systems becomes apparent when one stops to con- 
sider the various features of alloy dynamics which one desires to capture. 
Consider for a moment some of the details of the evolution of an Fe-AI 
alloy in the two-phase region of the phase diagram near the tricritical 
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point. The system as a whole could either be a single grain or a composite 
of many grains meeting at grain boundaries, across which the translational 
symmetry of the lattice is lost. Each crystalline grain is a represented by a 
finite segment of a BCC lattice. We shall focus on the dynamics within a 
single grain. This single grain will comprise the system. As equilibrium 
is approached, the system should consist of three types of roughly 
homogeneous d o m a i n s ~ o m a i n s  of the disordered phase and of the two 
variants of the ordered phase. The boundaries between the ordered and dis- 
ordered phases are known as interphase boundaries, and the boundaries 
between different domains of the ordered phases are known as antiphase 
boundaries. As the system evolves toward equilibrium, the various phases 
rearrange themselves and the interfaces slowly evolve. The dynamics of this 
motion is of interest since it determines the evolution of microstructure and 
the properties of the material. The theory can be tested when this motion 
occurs on laboratory time scales as it does in Fe-A1 alloys near the tricriti- 
cal temperature, but is particularly useful in modeling the many systems in 
which this motion is either too fast or too slow to be followed on a 
laboratory time scale. Questions one would like to answer are: 

(i) How does an initially disordered system evolve to a state that 
can be described by phases and domains? How do the surfaces of the 
grains affect this process? 

(ii) How do the dynamics of motion of the two kinds of interfaces 
reflect the presence or absence of a need for long-range mass transport 
resulting from jumps in composition? 

(iii) Under what conditions are the antiphase boundaries "wetted" 
by a thin layer of the disordered phaset3'4j? What happens to the such 
layers when an ,interface moves? Is it possible to give an accurate dynamic 
description of an instability observed by Krzanowski-- the coagulation of 
droplets of the disordered phase along antiphase boundaries sometimes 
under partial wetting conditions and sometimes under conditions where the 
disordered phase is not stable in bulk ~s sl? 

These questions are naturally approached within the context of a con- 
tinuum approach in which the interface between phases can be considered 
to be a well-defined surface or a thin region of smooth, high gradients. To 
approach these questions via a system of discrete evolution equations, one 
is limited primarily to the use of numerical experimentation which does not 
readily lend itself tO global predictions. 

Since, as we have seen above, the concentration is not an appropriate 
variable with which to continuize, the question arises as to which are the 
appropriate variables. In tackling this question we first present certain 
variables for the Fe-A1 system with which to continuize and then discuss 



880 Cahn and Nov ick-Cohen 

their possible generalization. Continuum approaches have been employed 
in the past (see, for example, the work of Eguchi e t  aL (3'4) and Krzanowski 
and Allen~5-s~); however, the connection between the continuum approach 
and the discrete approach has not been studied in detail, and it is not clear 
to what degree it should be possible to pass from one description to the 
other and obtain equivalent results. Eguchi starts from a free energy which 
is written in terms of a nonconserved order parameter and a conserved 
parameter which represents average concentration. He then writes down 
gradient flow equations which he proceeds to study via numerical methods. 
Krzanowski's starting point is similar, and while he does attempt to study 
questions (i)-(iii), his approach does not employ modern asymptotic 
methods. In a companion paper (9) we explore the predictions of such 
methods for the motion of the relevant interfaces. In the present paper we 
limit ourselves to a discussion of the relevant continuum equations and 
their derivation. 

The organization of this paper is as follows. In the next section we 
outline which features of the discrete model we wish to preserve in choos- 
ing an appropriate continuum limit. In particular, we need a well-posed 
model with similar minima which mimics the dynamics of the discrete 
model. In Section 3 we outline the dominant features of interest of Fe-AI 
alloys on BCC lattices in which the free energy in assumed to depend both 
on nearest neighbors and next nearest neighbors. In Section 4 we describe 
what happens when one tries to continuize using the mean concentration 
as the sole variable. In particular, we see that even if the resultant equa- 
tions are well-posed, the possibility of order-disorder transitions has been 
eliminated. In Section 5 possible choices of variables are discussed which 
should be capable of capturing the order-disorder transition as well as 
phase separation. In Sections 6 and 7 we discuss the application of these 
variables to (quasi-) continuization of the free energy and the discrete 
evolution equations. Finally, in Section 8 general considerations are dis- 
cussed for choosing variables when a number of phases and components 
occur in the system. 

2. F O R M U L A T I O N  OF THE PROBLEM 

We wish to outline the difficulties which may arise in passing from a 
discrete description of lattice dynamics to a continuum description of phase 
dynamics when microstructure is involved. We will not treat the problem 
in full generality; rather, we confine our discussions to those systems whose 
evolution is governed by a conserved gradient flow from a discrete mean- 
field free energy per unit site, defined in terms of the concentrations (or 
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probabilities) of the various components at the lattice vertices or points; 
i.e., 

1 o-:=~: E Y~ Y~ ~(c(n),c(n+a),c(n+b)) 
n e A  a~A b~B 

(2.1) 

where A is the set of vector distances to nearest neighbors, B is the set of 
vector distances to next nearest neighbors, A is a finite segment of a lattice, 
and ~ .=  IA[. The interactions between neighbors are essential for the 
production of microstructure. 

As mentioned earlier, we shall assume that the evolution of the 
discrete system is governed by conserved gradient flow; i.e., 

Ot = ,~A [ ~ c ( n + a )  6c(n)J '  n e A  (2.2) 

Two possible paths present themselves for formulating a continuum 
description for the evolution of the system, one is to take a continuum limit 
in the free energy ~ and then describing the dynamics of the system in 
terms of some type of gradient flow, and another is to directly continuize 
(quasicontinuize) the discrete gradient flow prescribed in Eq. (2.2). 

When there is no ordering, the concentration may be expected to be 
an appropriate variable for describing the continuized system. However, in 
systems such as Fe-A1 near the critical point nearest neighbors in the 
domains of the ordered phase are of different species. Clearly then in these 
systems the concentration cannot be expected to be an appropriate variable 
in which to continuize, because on the scale of the lattice spacing h it will 
be rapidly varying. 

The task is to choose a set of continuum variables and to derive equa- 
tions for these variables from (2.1) and (2.2) by either of the two paths. The 
decision of which set of variables to choose has to be made on the basis of 
a comparison of the dynamics and possible equilibria of the resultant equa- 
tions with those obtained from (2.1) and (2.2). Some of the criteria are 
based on properties of the discrete system which we would wish to be 
preserved in continuum models: 

(i) The resultant equations must be well-posed. 
This is not a ~ufficient condition. We will see that it is possible to 

obtain a description which is well-posed but which fails to capture the full 
richness of the system. 

(ii) The equations must exhibit sets of minima that are in some 
sense equivalent to those of the discrete equations. 



882 Cahn and Novick-Cohen 

(iii) In some sense the dynamics of the two systems must also be 
similar. 

While it is difficult to obtain a global comparison between the two 
systems, it may be possible to compare early- and late-time behavior for 
the two systems. Though such a comparison will not be undertaken here, 
in a forthcoming paper the long-time asymptotics will be described and it 
will be possible to at least compare the predicted long-time asymptotic 
dynamics with the final stages of dynamic evolution which are seen 
experimentally. These questions are discussed in the subsequent sections. 
Rather than to treat these questions in full generality, these problems are 
first discussed in the context of a simplest nontrivial model, an idealization 
of the Fe-AI system. The properties and phase diagram for this model will 
be outlined in the next section. 

3. AN EXAMPLE OF A DISCRETE FREE ENERGY 

Consider a rectangular segment of a three-dimensional BCC lattice 
which contains many points or lattice sites and assume each site to be 
occupied either by an Fe atom or by an AI atom (the possibility of vacan- 
cies is assumed here to be negligible). We take each site to be occupied by 
an Fe atom with probability cA or by an AI atom with probability 
c = cB = 1 - cA. Thus c assumes here the role of a concentration. We now 
write the free energy of our discrete periodic lattice system in terms of these 
probabilities. 

Recall that the free energy given by Eq. (2.1) is an average over lattice 
points of functions ~ of the composition at a lattice point and its neighbors. 
Since we wish to examine the mathematical problems introduced by con- 
tinuizing, any model will do if it has this neighborhood property and 
produces equilibria containing both ordered and disordered phases. 

The free energy per unit site is composed of two parts 

, ~ = E - T S  

where E and S are the energy and entropy per unit site, respectively, and 
T is a normalized temperature ( T =  k B T). At low temperatures far below 
the critical points, the contribution from S is relatively unimportant, since 
it is multiplied by T. If E is assumed to contain contributions from nearest- 
and next-nearest-neighbor pairwise interactions, it will by itself convey the 
desired neighborhood dependence on ~ .  Therefore it is not necessary for 
S to be a sum of such functions and the simplest entropy expression, an 
ideal mixing form on each lattice point, can be used. 
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Let us recall that a BCC lattice may be viewed as two interpenetrating 
primitive cubic lattices, which we shall call sublattices. One of the sublattice 
segments is taken to be the points n=(n~,n2, n3)�9 where the hi, 
i =  1, 2, 3, vary over a given interval of integers, and the second sublattice 
segment is taken to be the points n + �89 = (n~ + �89 n2 + :,~ n3 + �89 �9 A,,_ where 
n � 9  The total number of points of each sublattice segment is given 
by N. Furthermore, we define A = A t u A,_ and note that 2N = I AI. In terms 
of this notation the ideal mixing form for the entropy per unit site is 

1 
2-g y" S(c(n))= - - - -  

n @ A  

1 
2N ~ { c ( n ) l n c ( n ) + [ l - c ( n ) ]  l n [ 1 - c ( n ) ] }  

n ~ A  

Noting that a sum over nearest neighbors is given by a sum over a �9 A, 
where 

A={(i~,i2, i3)lik= +�89 k =  1,2, 3} 

and a sum over next nearest neighbors is given by a sum over b �9 B, where 

B =  {(J~,j2,J3)lJk= _%1, k =  1, 2, 3, j , = 0  if l#k} 

if the energetic contribution from each nearest-neighbor bond is taken to 
be 2t and that from each next nearest neighbor bond is )-2, then we may 
write two equivalent expressions for the free energy per unit site, whose 
variations are identical when the average concentration is held constant, 

1 
~, c ( n ) c ( n + a ) + ~ ) . 2  ~ c ( n ) c ( n + b ) - T S ( c ( n ) ) }  

a ~ A  b ~ B  

(3.1a) 

o r  

= I_~_ Z { 1 

-1222 Z c(n)[1-c(n+b)]-TS(c(n))} (3.1b) 
b G a  

In order to evaluate the terms in (3.1) for a lattice segment, it is 
necessary to extend the definition of c(n) beyond A. We do this by defining 
c(n) on an extended lattice segment A in which the values of c(n) outside 
of A are defined by reflecting the values assumed on the lattice through the 
final bounding planes. The final bounding planes are taken here to pass 
through the occupied faces of the finite lattice segment, which may 
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correspond either to integer or half-integer points. This extension will 
correspond both to Neumann boundary conditions, 

m" Vc(n) = 0 

(where m is the unit normal to the exterior face of the finite lattice seg- 
ment) and to Neumann-Neumann (or double Neumann) type boundary 
conditions, 

m .  Vc(n) = m .  VAc(n) = 0 

depending on the extent of the extension. Using these boundary conditions, 
it is now possible to rewrite (3.1) in terms of squares of differences, 

'~ =2"~ .~A (4~'1 + 3)t~) c2(n) - rg(c(n))  

-~, l~  F~ [c (n) -c (n+a) ]  ~ --~)t2 ~ [c(n)-c(n+b)] z (3.2) 
b~B 

The equilibria (minimizers) of this free energy have been studied in 
detail, and can be summarized as phase diagrams. "~ At high temperature 
there is a single disordered phase; at lower temperatures there may be one 
or more phases, some of which may be ordered. We recall that a phase is 
said to be disordered if the concentration is evenly and randomly dis- 
tributed over an entire lattice segment. Likewise, a phase is said to be 
ordered if the concentration distribution distinguishes between two or more 
sublattice segments. As shown in Fig. 1, the BCC lattice can be divided into 
two primitive cubic lattices which can each be further divided into two 
face-centered cubic (FCC) sublattices. These subdivisions allow for a set of 
possible ordered phases. Each phase has a uniform average concentration, 
and when there are two phases, the average concentrations of the 
individual phases will be different from each other and from the global 
average concentration. In particular, in the zero-temperature limit the con- 

Fig. 1. A description of crystal structures. (a) A BCC lattice segment for a cube with edge 
length equal to two unit cell constants. (b) The BCC can be subdivided into two primitive 
cubic sublattices. When "the "corner" and "body center" sublattices are occupied by different 
species, the ordered B2 structure results. (c) Both primitive cubic sublattices can be further 
subdivided into two FCC sublattices. The four sublattices are shown occupied by four dif- 
ferent-sized spheres. (d) When three of the FCC sublattices are occupied by the same species 
and a different species occupies the fourth, the result is the DO3 structure. (e) When one 
species occupies one corner and one body-center FCC sublattice and another species occupies 
the remaining two sublattices, the B32 structure results. 
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centration of the disordered phases may under some conditions approach 
0 or 1, and that of the stoichiometric ordered phases will approach some 
rational fraction. If we denote by ? the average concentration of the alloy, 
then the low-temperature limit will fall into five parameter  regions as 
shown in Fig. 2. 

1. 2 t < 0 , 3 2 2 < - 2 2 j : F o r  0 < ~ < I ,  there is phase separation into 
two pure (called "terminal") phases, c = 0 and c = 1. 

2. 2 ~ > 0 , 2 z < 0 :  For  0 < g < 5 0 %  ( 5 0 % < g < 1 )  there is separation 
into a pure phase c = 0 (c = 1 ) and into one or both of the domains of the 
ordered CsC1 structure (Fig. lb); Strukturbericht designation B2, space 
group Pm3m, with average concentrat ion c = 1/2. Two thermodynamical ly 
equivalent domains arise because the species can occupy either of the two 
primitive cubic sublattices of the original BCC lattice. 

3. 0 < 32z < 22~ : In this region each of the two primitive cubic sublat- 
tices subdivides further into two face-centered cubic (FCC) sublattices with 
a unit cell constant that is twice that of the BCC unit cell. No  two-phase 
coexistence occurs. Higher-order phase changes occur with increasing g 
from disordered BCC to preferential occupation of  one of the four FCC 
sublattices with variable composit ion until the stoichiometric composit ion 
at 25% is reached. (This structure, shown in Fig. ld, is known as DO3, 

A + B32 

A + B 

I 

X 
2 

A.D03.B2 

/ 3 Xl 

A + B2 

2 

Fig. 2. The ground-state configurations of a binary nonstoichiometric alloy on a BCC lattice 
with first (),~) and second (~:) neighbor interactions Iall into five parameter regions. Ordered 
structures are seen in regions 2, 3, 4, and 5. Separation into two phases occurs in regions 1, 2, 
and 4. 
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space group Fm3m with a doubled cubic cell constant.) Further increases 
in g lead to the gradual occupation of the second of the pair of FCC sub- 
lattices from the same primitive cubic sublattice and to a CsC1 structure 
at 50%. 

4. 0 <  - 2 2 1 < 3 2 2 :  For 0 < g < 5 0 %  there is separation into a pure 
phase, c = 0, and into one or more of four of the domains of an ordered 
stoichiometric structure in which one FCC sublattice from each of the 
different primitive cubic sublattices (one FCC sublattice from the BCC sub- 
lattice of corners and one from the BCC sublattice of body centers) is 
occupied by a given species. The prototype structure is NAT1, shown in 
Fig. le (Strukturbericht designation B32; space group Fd3m with a 
doubled cubic cell constant). 

5. 0<221 <322: No two-phase coexistence occurs. Higher-order 
phase changes occur with increasing ? from disordered to D O  3 at 25% to 
NaTI at 50%, both with variable stoichiometry. 

In fact, it is known that these mixtures of structures persist at higher 
temperatures and no additional types of structures appear. Furthermore, 
the values of the parameters that bound the stability regions of the various 
ordered structures are known to be insensitive to temperature. 

In terms of length scales for describing the composition, we then 
expect three types of behavior. In parameter region 1, there is a length scale 
long compared to the cell length. In regions 3 and 5, the length scale is that 
of the unit cell for the composition, and varies rapidly from site to site. In 
regions 2 and 4, however, both length scales enter, and in region 4 further 
complications are introduced by the NaTI structure. Therefore in the 
following sections we concentrate on the second parameter region, as both 
phase separatiQn and ordering can be expected to occur simultaneously 
there. Hence, this is a suitable parameter range for testing our ability to 
find continuum (quasicontinuum CII"I2~) limits in systems in which various 
types of microstructure appear. 

4. C O N T I N U I Z I N G  IN T E R M S  OF THE VARIABLE c(x) 

Let us now consider the continuum (or quasicontinuum) limit of the 
free energy in terms of the variable c(x). Let h be the length of the side 
of a cell in a BCC lattice, and expand the terms that are the squares of 
differences in a Taylor series: 

y '  [c(n + b) - c(n)] 2 = 2h 2 IVc(n)F 2 + O(h 3) 
b E B  

[c(n + a) - c(n)] 2 = 2h 2 IVc(n)l 2 + O(h 3) 
I I E A  
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[where O(h") stands for terms of order h"]. Note that by the error estimate 
for the trapezoid rule 

1 1 
f g(x) dx + O(h 2) 

2---N E g(")=-~l  ",at.co Q E A  

where 2 N =  IAI. We obtain 

'I,{ o~ =i-~ .~.oc [(43., + 33.~) c~(x) - r S ( c ( x ) )  + O(h'-)] 

+ [ -  ~3.1 IVcl = (4.1) 

Clearly it would be desirable to keep all terms to the same order. Here 
that would imply that all terms should either be kept to O(1) or O(h2). If 
O(1 ) terms are kept, the resultant equation would not be well-posed within 
the spinodal, region which would occur at sufficiently low temperatures 
whenever 43.1 + 33.2 < 0. If we keep all terms to O(h 2) accuracy, we would 
be faced with the difficulty that not all terms are known to O(h 2) accuracy. 
Hence we employ the philosophy of incorporating all terms to leading 
order with the thought that in this manner all terms will be in some sense 
represented. It will always be possible later to delete small terms which do 
not play a critical regularizing role. 

If we assume that the dynamics follows a "conserved gradient flow," 
i.e., 

3c 6 ~  
-& = MILI/t 6c 

(where ,J represents the Laplacian operator), then we obtain the equation 
(keeping all terms to lowest order) 

dc 
&= gd{2(42, + 33.2)c- TS'(c) + (3.l + 3.2) h2 Ac} (4.2) 

Equation (4.2) will be well-posed only if (2, + 3.2) < 0. If 43., + 322 is suf- 
ficiently negative, then 2(43.1 + 322) c(x)-  TS'(c(x)) will be nonmonotone 
when the temperature is sufficiently low, and a separation of phases will be 
predicted. Alternating regions of "order" and "disorder" will not be seen. 
This is inherent in the assumptions of the approach, since if c(n) has been 
assumed to be a continuum variable, it cannot be rapidly varying and 
neither can ordering appear. 

The result are summarized in Figs. 3a and b. Note that the criterion of 
well-posedness suggested in Section 2 is not sufficient for guaranteeing 
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Fig. 3. The low-temperature behavior of Eq. (4.2). (a) The higher-order term is neglected, 
and (4.2) reduces to a nonlinear diffusion equation that is either ill-posed or yields equilibrium 
solutions that are constant. (b) the higher-order term is included. For some range of the 
parameters, the higher order term regularizes the equation, but renders the equation ill-posed 
elsewhere. In the figure the region labelled ill-posed is ill-posed with regard to the regularized 
equation. The region labelled "homogeneous" is the region with constant equilibrium. The 
region labelled A + B is the region which yields spinodal decomposition for the regularised 
equations and is ill-posed for the unregularized equations. The equilibria can not account for 
ordering. 

good modeling. If only terms of O(1) are kept, the results are as shown in 
Fig. 3a; on the basis of the free energy, a homogeneous  single phase occurs 
overpart  of the parameter  domain with a heat of mixing, 42~ + 322, that is 
negative, and two terminal phases occur over the remainder of the domain. 
However, in this latter region, the evolution equation would be ill-posed in 
that domain without the inclusion of the O(h 2) terms. When terms of O(h 2) 
are included, the results are as shown in Fig. 3b. Note  that much of the 
region that previously was labeled "homogeneous"  is now ill-posed, and 
that most  of the spinodal region has been regularized by the appearance of 
the fourth-order term. The spinodal region has expanded to cover parts of 
regions 2 and 4, and at low temperature gives the two terminal phases, but 
in which the second phase in the discrete formulation is expected to be 
ordered and at 50%. Only in region 1 can Eq. (4.2) properly describe the 
dynamics. Elsewhere Eq. (4.2) does not even properly describe the evolu- 
tion of the local mean concentration. 
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5. A P P R O P R I A T E  V A R I A B L E S  FOR A M O D E L  S Y S T E M  

We would like to choose some linear combination of the values of the 
concentrations evaluated at the lattice points that may be expected to be 
slowly varying and thus may be continuized in region 2, where 21 >0,  
22 < 0. A possibility would be to define the variables 

ui(n)=~6 ~ [ c ( n + a ) + c ( n ) ]  
a ~ A  n~Ai,  i = 1 , 2  (5.1) 

v i ( n ) = ~  ~ [ c ( n + a ) - c ( n ) ] ,  
a ~ A  

where a s A varies over the indices of the nearest neighbors. 
Clearly the variables u~(n~) and uz(n2) represent the average concen- 

tration and may be expected to be slowly varying when n;eA~. It is also 
readily seen that these variables defined on the extended lattice .4 can be 
expected to be conserved; i.e., ignoring boundary effects, 

uz(n)+ ~ u2(n)= ~ c(n) (5.2) 
nEJ/i n E A 2  n~A 

Similarly, the variables v~(n~) and v2(n2) are seen to give a measure of the 
local ordering and may be considered to act as order parameters. Since the 
concentrations on the different lattices are being summed together with 
opposite signs, these variables, too, may be expected to be slowly varying 
for n ~ A i .  We note here that there is no reason to expect this second set 
of variables to act as conserved quantities. 

This choice of variables, however, is not unique, as is readily seen by 
defining the "further symmetrized" variables 

a(n) = l  ~. [ u l ( n ) + u 2 ( n + a ) ]  
a, E A  

n e a t  
b(n)=]~ ~ [v,(n)-v2(n+a)], 

s E A  

Similar variables may also be defined on the "second" lattice. Again, a(n) 
may be taken to describe an average concentration and satisfies up to 
boundary effects 

E a(n)=�89 E c(n) (5.4) 
n E h l  n ~ A  

and b(n) acts again as an order parameter and is not a conserved variable. 
The primary difference in these two sets of variables is the number of lattice 
points taken into consideration in defining the "averaged" variables. We 
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1 

a E A  

will discuss the distinctions between these two sets of variables further in 
Section 7. 

We remark that while these variables have been defined with region 2 
of the phase diagram in mind, these variables should also be appropriate 
in region 1, where simpler structure is seen, since in the absence of ordering 
the order parameter should assume the value zero approximately, and the 
average concentration should give a good description of the disordered 
phases. In regions 3-5, where additional structures are seen, the variables 
defined above cannot be expected to suffice. 

Next we outline the evolution behavior which results when the newly 
defined variables are employed. We call attention to some of the properties 
of these variables which we have defined. In particular, it is easy to check 
that for i=  1, 2 

c(n)=ui(n)-vi(n ), nEA i (5.5) 

c(n+a)=u~(n)+vg(n), neAi (5.6) 

Hence, if our variables have been chosen so that they will be slowly vary- 
ing, we find from the above relations that 

u i (n)+vi(n)=�89 Y' {uj(n+a)-vj(n+a)} 
a E A  

=uj(n)--vj(n), neA~, ir i, j e { 1 , 2 }  (5.7) 

where uj(n), Vj(II), n �9 Ai, refer now to the interpolated values, 

u j (n)=~ ~ u/ (n+a) ,  vj(n)=~ ~ vj(n+a),  n~A i 
, a E A  a E A  

Recall that 

1 { 
"~" =2-N .~A (421 +322) c2(n) - TS(c(n)) 

--12,  ~ [ c ( n ) - c ( n + a ) ] Z - � 8 8  ~ [c(n)-c(n+b)]'-} (5.8) 
a E , 4  b ~ B  

We wish now to express (5.8) in terms of the functions ui and v~. Note that 

F, {(4,l, + 32~) c- '(n)- rS(c(n))} 
rl ~ A i  

= .S" {(421 + 322)[u,(n) -- v~(n)] 2 -- TS(u,(n)- v~(n))} 
n e A i  
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From (5.5)-(5.7) 

[ c ( n ) -  c(n + a)] 2= y'  
a e A  a ~ A  

=Z 
a E A  

= 32v~(n) + (.0(h 2) 

for n e A ~, i # j,  i, j e { 1, 2 }. Similarly, 

{ [ u , ( n ) - v , ( n ) ] -  [ u j ( n + a ) - v i ( n + a ) ] }  2 

[ u i ( n ) -  vi(n) - ui(n + a) - vi(n + a)] 2 

~ =  

Next, using (5.7), we obtain 

~_ 1 
Y" = ~ I~a,t~ce { [2(421 + 322)(u~ + v~) 

- -  T S ( u  i - -  1 ) i ) -  T S ( u  i "q- o i ) -  2 1 1 6 v ~  + d~(h2)] 

- [22h2(lVu;12 + IVo~l 2) + (_9(h3)] } dx, i=  1, 2 

1 
E T-L-T Ilattic e [(4/I., +322)(U,--V,) 2 -  TS(ui-vi)-)t,8v~+O(h2)] 

i =  1,2 

[ c ( n ) - c ( n + a ) ]  2= ~ { [ u i ( n ) - v i ( n ) ] - [ u j ( n + a ) - v ~ ( n + a ) ] }  2 
a e A  a ~ A  

= ~ [ u j ( n ) + v j ( n ) - u j ( n + a ) + v j ( n + a ) ]  2 
a e A  

= 32v2(n) + d~(h 2) 

for n e A i, i # j,  i, j ~ { 1, 2 }. Likewise 

[c(n) - c(n + b)] 2 
b~B 

= ~ { [ u i ( n ) - v i ( n ) ] - E u i ( n + b ) - v i ( n " F b ) ] }  2, n E A  i 
bEB 

= 2h 2 IV(ui-  vi)(n)l 2 + (-0(h 3) 

Noting by the trapezoid rule that 

1 
~ ~ g(n) 1 g(x)  dx+(9(h2.), i = 1 , 2  

Ai 

we may combine the previous estimates to obtain 
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Representing each term by its lowest-order approximation nonvanishing 
contribution, we obtain the approximation 

1 
, ~  = ~ flattice [2(42j + 322)(U 2 q- O 2) -- TS(u -- v) -- TS(u + v) 

- 1621 v 2 -  22h2(IVu12 + IVvl2)] dx (5.9) 

where u ~ u;, v .~ vi, i = 1 or 2. Note that the free energy is not bounded 
from below if 22 > 0. 

In order to derive gradient flow equations, we determine which of our 
variables are conserved. It is easily checked that the way we have defined 
c(n) on the extended lattice implies that within boundary effects 

Z E c(n+a)= E c(n), i#L i,j={1,2} 
n~Ai a~A nEA) 

and hence for i,j~ {1, 2}. 

ui(n)= ~ I ~  ~ [ c ( n + a ) + c ( n ) ] ' t = � 8 9  Y'. c(n) (5.10) 
nEAi n~Ai  l aEA . I  n~A  

vi(n)= ~ f ~  ~ [ c ( n + a ) - c ( n ) ] t = � 8 9  ~', c(n)- �89 ~ c(n) 
n~Ai n~A~ k a~A ) nEA 1 neAi  

(5.11) 

Clearly Y'-.~A c(n) represents the total concentration of Fe on the finite 
lattice A, and thus Z,~A, u;(n) is a conserved quantity. On the other hand, 
from (5.11) there is no reason to expect v;(n) to be a conserved quantity. 
Therefore it is consistent to assume that u(x, t) is governed by a conserved 
gradient flow and that v(x, t) is governed by a nonconserved flow. Hence 
we write 

M, ~ MLILI -~= V. MI V and ~ =  M2--* M2ILI -M2 '~-ff--~ & 

(5.12) 

While one might hope to also include cross-terms in the gradient flow, we 
refrain from using this more general formulation here since it will not in 
general imply a monotonically decreasing free energy. Employing the 
definition of ~ ,  we can write Eqs. (5.12) explicitly as 

Ou 
-~=M~d{4(421+ 322)u- T S ' ( u - v ) -  TS'(u+v)+ 222h2du} (5.13a) 

& 
-~=M2{4(421-322)v-TS'(u--v)+ TS'(u+v)-Z22h2dv} (5.13b) 

822/76/3-4-t0 
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F r o m  the way in which the lattice has been extended,  it is clear that  the 
bounda ry  condi t ions 

m .  V u = m .  V A u = O  and m - V v = 0 ,  x e c312 (5.14) 

should be imposed.  Note  here that  this method  does not  yield guidelines 
for the relative size of the coefficients M~ and M2. We will return to discuss 
this point  further in the next section. 

Figure 4 gives the pa ramete r  spaces for the low- tempera ture  behavior  
of an initially d isordered nearly homogeneous  specimen, modeled by equa-  
tions (5.13) with initial condi t ions  close to u---const  and v = 0 .  Note  that  
the equat ions  are i l l-posed for 22 > 0. As depicted in Fig. 4, when 22 ~< 0 
order ing commences  if 4 2 t - 3 2 2 > 0 ,  and modula t ions  in u, that  is, 
sp inodal  decomposi t ion ,  for the disordered case, v = 0 ,  commence  if 
42t + 3 2 2 < 0 .  The final states of the well-posed region are por t rayed  in 
Fig. 4. In part icular ,  we see that  if 21 < 0  and 2 2 < 0 ,  then the final state 
cor responds  to two terminal  states with no ordering,  and if )-t > 0  and 
22 < 0 ,  then the final state cor responds  to separa t ion  into a pure phase 
c = 0 or  c = 1 and one or  both  domains  of an ordered CsC1. Thus we see 
that  the final states are considerably  at variance with the nature  of the 

Fig. 4. The low-temperature behavior of Eqs. (5.13) for an initial state which is nearly 
homogeneous and disordered. Note that the equations are ill-posed for 22 > 0. The initial 
instabilities are described by two dividing lines, one for ordering instabilities and one for 
compositional instabilities; they divide the parameter region in which the equations are well- 
posed into three regions. In the middle region there are both compositional and ordering 
instabilities. The final equilibrium states of (5.13) are portrayed by one dividing line. In the 
region 2j < 0, 22 < 0, there is separation into two terminal phases. In the region described by 
2~ > 0, 2, <0, the final equilibrium state corresponds to a mixture of ordered and thermal 
phases. 
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initial instabilities, and many interesting dynamic questions need to be 
addressed here. Note, though, that in terms of the final states, in the 
regions in which the equations are well-posed, the predictions for the well- 
posed region described in Fig. 2 have been reproduced. 

In summary, the half-space )-2 < 0  in which the equations are well- 
posed may be subdivided into four regions: 

(i) The separation into two terminal phases by spinodal decomposi- 
tion without ordering occupies the portion of region 1 of Fig. 2 where the 
coefficients of the u and v terms in Eqs. (5.13) are both negative, that is, 
when 42, < 322 < 0. 

(ii) Initially in the region defined by 3).2<4)., <0,  both spinodal 
decomposition and order-disorder type instabilities occur; however, as the 
final equilibrium is approached, only separation into two terminal phases 
is seen. 

(iii) Ordering without initial phase separation occupies the portion 
of region 2 of Fig. 2 where the coefficients of the u and v terms in 
Eqs. (5.13) are both positive, that is, when -4) . ,  < 3)-2 <0.  Since the final 
equilibrium corresponds to a mixture of ordered and terminal phases, there 
is a delayed spinodal decomposition that begins only after some ordering 
has occurred. This has been termed a conditional spinodal and has been 
observed in Fe-AI alloys. ~'3~ 

(iv) Ordering and simultaneous phase separation onset initially and 
dominate the final states in the remainder of region 2; i.e. 3)-2 < -4) . ,  < 0. 

6. THE QUASICONTINUUM LIMIT OF THE 
DISCRETE EVOLUTION EQUATIONS 

In this seetion we derive continuum equations to model the evolution 
of the Fe-AI system by writing down discrete evolution equations on 
the lattice and taking a quasicontinuum limit. We follow Richards, I'1 
where discrete evolution equations were written down for Fe-AI in one 
dimension, and develop an appropriate three-dimensional analog. Then, 
following the philosophy of Section 3, we introduce the variables ui and vi 
as defined in (5.1). In order to obtain a connection with the equations 
obtained at the end of Section 5, we further symmetrize the resultant equa- 
tions by introducing variables a and b obtained by averaging over the 
variables ui and v~. 

Following Richards, we assume that the evolution of the probabilities 
c(n) is governed by a conserved gradient flow. In three dimensions, this 
implies that 

7 c ( n ) = O  ~/, ~&c(n+a) &c(n)J' l l EA  (6.1) 
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where 6~16c is the first variation of the free energy in its discrete form and 
Q is a mobility coefficient. Recalling (3.2), we may write the free energy 
a s  

1 0c 2 G(c(n)) _ 41_ 21 
~- =2-N.~A {~c (n)+ 

- ~ 2 2  ~', I-c(n+b)-c(n)] 2} 
b E B  

[c(n + a) - c(n)] 2 
a ~ A  

where ct=2(421+322) and G ( y ) = - T S ( y ) .  In this section it will be 
convenient to work with the following variant of the definition of the free 
energy: 

1 {~x 2 I ~'=~-~ ~,~ ~c ( n ) + G ( c ( n ) ) - ~ 2 ,  

- ~ 2 2  ~ [ c ( n + b ) - c ( n ) ]  2} 
b e B  

[c(n + a ) -  c(n)] 2 
a ~ A  

(6.2) 

where ,,~ denotes the points of the extended lattice. We note that ~ and 
vary by the contributions from the boundary effects. From (6.2), it follows 
that for n E A 

6--~)- ow(n)+ g(c(n))+ 21 Z [ c ( n + a ) - c ( n ) ]  
a E A  

+22 ~, [ c ( n + b ) - c ( n ) ]  t (6.3) 
b ~ B  ) 

where g = G'. 
In terms of the variables u,. and vi, we obtain from (5.1) and (6.1) that 

for nEAj 

d ui(n) =~6 d dt ,~A ~ [c(n + a) + c(n)] 

F 
+ Z L&(n + a~) 6~(n)JJ a 2 e A  

=--~- E E ~c(,+a,+a2) ~cS-~i 
IIIEA It2EA 

(6.4) 
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and 

d d 

= 8 ,,~,A ,2~A~ L&(n+a~+a,) 6c(n + a2) 

- ~ Lac(n+a2) 6c(n)JJ a2r  

QN Z Z L6c(n+a ,+a , ) -26c(n+al )+~-~J  (6.5) 
8 it, l ~ A a2EA 

Substituting (6.3) into (6.4) and (6.5), respectively, we obtain that for n ~ A,. 

du'(n)=M{dt ~ ~ [~ 
a l E A  a2EA 

+ ~ ~ [g(c(n+al+a2))-g(c(n))] 
a l ~ A  a2EA 

+21 ~ ~ { ~  [c(n+a,+a2+as)--c(n+a,+a2)] 
a l E A  a2mA a A 

-- ~ [c(n+a3)--c(n)]} 
~3r 

+)-2 ~. ~ { ~  [c(n+al+a2+b)-c(n+a,+a2)]  
a IEA a2EA b ~ B  

b ~ B  

and 

, { ~vi(n)--M ~, ~ [ac(n+al+a2)-2otc(n+al)+~c(n)] 
a l E A  a2EA 

+ ~ ~ [g(c(n+a l+a2))-2g(c(n+al))+ g(c(n))] 
a l E A  a2~A 

z y. { }  
a l E A  a2~A a A 

--2 ~ [c(n+al+a3)--c(n+al)]+ ~ [c(n+a3)--c(n)] } 
a3~A a3~A 



898 Cahn and Novick-Cohen 

f 
+)`2 ~ Y'. ' { ~  [c(n+al  +a2 + b ) - - c ( n + a l  +a2)] 

, l E A  a2EA ~-bEB 

- 2  ~ [ c ( n + a l + b ) - c ( n + a l ) } +  ~ {c (n+b) - c (n ) ]}}  
bE B b E B  

where M = Q/32. 
Because the variables ui and v~ have been constructed to be slowly 

varying for n;~A~, we can proceed by Taylor expanding. Furthermore, 
since by (5.5) 

c ( n ) = u i ( n ) - - v i ( n ) ,  nE,4 i 

it follows that c(n~ ) and c(n2) may also be assumed to be smoothly varying 
functions as long as the argument is constrained to vary only over n~e A~. 

Noting that for beB, a~,a2eA, and n E A  i 

n+�89  n + a t + a 2 + b e A i ,  n+bEAi ,  

and that 

IAI = 8 and IBI = 6 

and recalling the definition of v~, we may write 

o r  

j#i  

dui(n)=Mdt { E E {~ +a2)+  g(c(n+al-Fa2)) 
IIIEA a2EA 

+16)`lv~(n+al+a2)+22 ~ [ c ( n + a l + a 2 + b )  
b E B  

--c(n +a l  + a 2 ) ] } -  64 {~xc(n)+ g(c(n))+ 16)`1 vi(n) 

b ~ B  

. { [ M Y' ~ (~x-6)`2)c(n+a,+a2) ~ ui(n) = .,EA ,,2EA 

+ g(c(n + a t + a2) ) + 16), 1 v(n + a I + a2) 

+22 ~ c(n+at+a2+b)]-64[(ot-6)`2)c(n)+g(c(n)) 
b e B  

+ 16)`lvi(n)+)`2 ~ c (n+b) l}  (6.6) 
t.,aB 
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Similarly, 

d v , ( n ) = M { ~  Y'. I ( ~ - 1 6 2 t - 6 2 2 ) c ( n + a l + a 2 )  
a i e A  a 2 e A  

+ g(c(n + ai + a2)) + 1621 vi(n + a, + a2) 

+22 ~ c ( n + a l + a 2 + b ) ]  
b E B  

--6422 ~ [ c ( n + b ) + 4 v i ( n + b ) ] -  16 
b e B  

E 
a l e A  

g(c(n + al)) 

+ 6 4 [ -  (~ - 1621 - 622) c(n) + g(c(n)) 

4(~ - 1221 - 622) vi(n)]'~ 
) 

(6.7) 

Equations (6.6) and (6.7) suggest that we Taylor expand expressions of the 
form 

(i) ~ ~ f ( n + a , + a 2 )  
a l E A  a2eA 

(ii) ~' f (n  + b) 
b e B  

(iii) ~ ~ ~ f(n+at+a2+b) 
a l e A  a2~A b e B  

where the function f varies smoothly over n~ e A I or n2e A2. Additionally 
we must treat the term 

(iv) ~ g(c(n + a)) 
a E A  

where n E A i- 
We introduce the notation .~<e t, where 

3 04 
,- E a2x, %, I 

i , j = l  
Vi, j, i , j =  {1,2, 3} 

and ff42, where 

3 04 

i , j = l  

A 2 =~i j  ij 
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A Taylor expansion then gives 

(i) ~ Z f(n+a,+a2) 
a t~A a2~A 

= 64f(n) + 16h2Af(n) + h4~]  f (n)  + (p(h6), 

where 5a43 --" {2Sa4 l - ~s Similarly, 

(ii) ~ f(n + b) 
bEB 

= 6f(n ) + tflAf(n) + ~ h4.~p24 f (n)  + (.O(h 6 ), 

n~A,  

n~Ai 

Combining the above results, we obtain 

(iii) Z ~ Z f ( n + a l + a 2 + b )  
a l~A a2EA b~B 

= 384f(n) + 160h'-Af(n) + h4L-a~f(n) + (9(h6), 

where 5 a ~ -  1 4 2 {28.~a4 + g.~q'4/. Lastly, by (5.7) for n~Ai  

(iv) ~ g ( c ( n + a ) ) =  ~ g ( u j ( n + a ) - v j ( n + a ) )  
a e A  a ~ A  

= {8 + h~-A + (9(h4) } g(uj(n) - vj(n)), 

i # j ,  i, j 6  {1,2} 

n~A,. 

We comment that the expression in (iv) is somewhat dubious since g(c) 
contains logarithmic terms and hence the derivatives of g cannot be 
guaranteed in advance to remain bounded. 

First we treat the equations for u;. Substituting (i)-(iv) into (6.6), we 
obtain 

Ou--2~= M{ [16h2A + h's + (9(h6)] [0w(n) + g(c(n)) + 1621 v~(n)] 
Ot 

+ [16).2h4A2c(n)+g)(h6)]}, n~Ai  (6.8) 

Similarly we obtain 

0v--2~ = M({ 16(c~ - 1621) h-' Ac(n) + (9(h4) } 
Ot 

256[(cr - 1621) vi(n) + ( -21  + 22) hZdv~(n) + (-9(h4)] 

+ 16h2{ [8 + h2A + ~O(h4)][g(u,(n) - vi(n)) - g(uj(n) - v:(n))] }) 

(6.9) 
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To obtain a suitably symmetric form of equation analogous to the results 
which were obtained in the previous section, it is necessary to introduce 
further symmetrized variables. Therefore, we define 

a ( n ) - - ~  ~,, [ u , ( n )+u2 (n+a ) ]  

b(n)--" ~ ~ [ v l ( n ) - v 2 ( n + a ) ] ,  
IIEA 

n e a  t 
(6.10) 

In order to exploit these variables, we note that from (5.7) it follows that 
for n e A  

u,(n)= u2(n) 
(6.11) 

v,(n) = - v2(n) 

From (6.10) and (6.11) it then follows that for n~A 

a ( n )  = u l ( n  ) + (9(h z) = u21n ) + (.0(h 2) 
(6.12) 

b(n) = vl(n) + (-9(h z) = -v2(n) + (9(h z) 

We now put these estimates to use. From (6.8) and the definitions of u~(n) 
and a(n), we obtain that 

Ot [16h2A+h '~4"q-(ff(h6)] ~ u t ( n ) + ~  ~ [g(c(n))+g(c(n+a))] 
a E A  

+1621 ~ [vl(n)+v2(n+a)]l+[162zh4AZul(n)+O(h6)] I (6.13) 
a E A  ) / 

Note that by (5.5), (iv), and (6.12), 

[g(c(n)) + g(c(n + a))l  
a E A  

= ~ ~" [g(ut(n)--v,(n))+g(u2(n+a))--v2(n+a))] 
a ~ A  

= �89 [g(ul(n)) -- v,(n)) + g(u~(n) - v2(n)) + 60(h2)] 

= �89 [g(a(n)) - b(n)) + g(a(n) + b(n)) + (_9(h2)] 

We note further that by (6.11) 

~ Ev,(n) + v2(n + a) ]  = ~ [v,(n)  + v2(n)] + V(h 2) = V(h 2) 
a E A  
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By (6.12) and the above estimates, (6.13) becomes 

0a(n) 
Ot = M{(16h2A + h'L#a3)[~a(n) + �89 g(a(n) - b(n))] 

+ g(a(n) + b(n)) + d~(hZ)] + [1622h4A2a(n) + (.0(h6)] } 

Similarly from (6.9), and the definitions of van) and b(n), 

Ob(n) ( 
Ot = M  [-16(cc-1621)hZAvl(n)+(9(h4)] 

- 256[(~ - 162j) b(n) + ( - 2  t + 2z) h2Ab(n) + (9(h4)] 

+ [8+h2A+(~(h4)] {.~, [g(un(n)--v,(n)) 

+ g (u l (n+a) - -  v l (n+a) ) ]  

- -  ~ [-g(u2(n) -- v2(n)) + g(u2(n + a) -- v2(n + a ) ) ] ]  (6.14) 
a E A  / 

From (6.12), we obtain that 

[g(ul(n)--v,(n))+ g(ul(n+a)--vl(n+a))] 
a ~ A  

- -  ~ [g(uz(n)--v2(n))+ g(u2(n+a)--vz(n+a))] 
IIE A 

= 16g(a(n) - b(n)) - 16g(a(n) + b(n)) + O(h 2) 

In considering (6.12)-(6.13), since there are already terms of (P(h 4) which 
we cannot control, we employ the method of maintaining each term to 
lowest nontrivial order. In this fashion, we obtain from (6.12) and (6.13) 
the (phenomenological) equations 

Oa(n) = 16Mh2z I {~a(n) + �89 [g(a(n) + b(n)) + g(a(n) 
Ot 

- b(n))] + 22hZAa(n)} (6.15) 

and 

ab(n) 
at = 256M{-(~-  162n)b(n) 

+ �89 g(a(n)-b(n))] -22h2Ab(n)} (6.16) 
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Noting that all quantities are assumed to be slowly varying and are 
evaluated at the same point, and recalling the definitions of ~, g, and M, 
one can write (6.15)-(6.16) as 

~ = Q h 2 A { 4 ( 4 2 , + 3 2 2 ) a - T [ S ' ( a + b ) + S ' ( a - b ) ] + 2 2 = h 2 z / a }  (6.17a) 
4 

and 

Ob 
3 t  = 4Q{4(42~ - 322) b + T[S'(a + b ) -  S ' (a-  b)] - 222hZAb} (6.17b) 

which are identical to Eqs. (5.13) in Section 5, except that the coefficients 
M~ and Ms are determined now in terms of the original coefficient Q. 
Again, noting the construction of the extended lattice, it is clear that 
double Neumann boundary conditions 

m .  V a = 0 ,  m .  V b = 0 ,  m .  V A b = 0  (6.18) 

again apply. 

7. S K E T C H  OF THE G E N E R A L  CASE: V A R I A B L E S  
A N D  D Y N A M I C S  

Let us consider what is to be done in the general case. Here by the 
general case we refer to gradient systems governed by a free energy. It may 
be that the approach outlined in this section may also be useful in certain 
more general settings. 

Let . f  denote the discrete free energy which governs the system and 
let us assume that our system is not too far from equilibrium. Consider 
now the set of homogeneous minima of o~ on an infinite lattice. If o~ is an 
arbitrary free energy, it will be necessary to search for these minima. If, 
however, we are working with some well-known system such as in the case 
of Fe-AI discussed in Section 3, then the set of such equilibrium states is 
already well known. 

We denote these states by 4'1, ~z ..... ~t- Each of these states is deter- 
mined by prescribing the values of the concentration at the lattice vertices. 
In the case of multicomponent systems, it may be necessary to specify a 
vector of concentrations at each lattice site. With each state r we associate 
a function @~ which prescribes this state on the infinite lattice. This may be 
done in one of two ways: (i) A function (or a vector function) may be 
prescribed which is discretely defined only at the lattice points, or which is 
globally defined via an array of delta functions. (ii) A suitably interpolated 
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version of (i) may be prescribed, so that the resultant functions will be 
defined smoothly over the entire lattice. 

We will opt here primarily for the first method; however, the second 
method will also be discussed below. Let us consider what these two 
descriptions might be for our model system, Fe-AI near the tricritical 
point. In such a system, two ordered variants and one disordered phase are 
to be expected in a region which was denoted as region 2 in Section 3. The 
corresponding @ may be defined by 

(oo) a a, po nts 
�9 ~ = 1 on lattice A~ and - 1 on lattice A 2 

r 1 on latticeA~ and + l on lattice A z 

(7.1) 

In terms of an interpolated representation we could write 

{l 
~)1 = COS(7[x/h ) cos(roy~h) cos(gz/h ) 
~,_ - ~ ,  

(7.2) 

where h is the lattice spacing. Obviously, the definition of q~i is not unique, 
and there are many alternative choices, but we have chosen this description 
in terms of Fourier modes since this corresponds to the description given 
commonly in statistical physics. "4~ Note that the functions ~i and ~g are 
rapidly varying if h is small. 

In the general case, some analog of the functions given in (7.1) and 
(7.2) which may correspond to vector functions in multicomponent systems 
will be prescribed. In all events, the resultant functions will be rapidly 
varying except for the representation of the disordered phase, which in the 
sequel we denote by q~o and by t~ o. In the above example, ~n and q5 2 (or 
~n and ~2) are linearly dependent and are variants of the same phase. We 
eliminate this redundancy by defining ~u (or ~) to be the largest linearly 
independent subset of these functions. We note that in general it is also 
possible to choose the set ~u (~,) by group-theoretic means by considering 
the symmetry properties ol the various phases. The possible equilibria 
should typically contain a number of phases and their variants. In order to 
describe a phase and its variants, it is necessary to include in ~u a number 
of functions equal to the dimension of the span of the bases of one or more 
irreducible representations corresponding to the space group of that 
phase ~8~ (an upper limit is given by the order of the regular representation 
of that group). If the possible equilibria contain a number of different types 
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of phases, then since by our remarks above each and its variants may be 
described by 

span{~0, ~il ..... q~ii~ } 

where Ji + 1 is the number of functions needed for the ith phase, clearly the 
minimal number of functions necessary to describe the different possible 
phases is given by 

m + 1 = dim { I ~ 0 '  l ~ i l  . . . . .  ~O'i} 
i 1 

where k is the number of distinct types of phases. Equivalently m + 1 is 
equal to the number of linearly independent functions in the union of the 
bases of one or more irreducible representations of each of the individual 
phases. 

Let us suppose that ~ contains m functions ~;  in addition to ~0 which 
may be considered to be functions o1: x/h. We introduce the following 
ansatz which we wish to employ to describe the concentration: 

m 

c(x, t )=  r/o(X, t) ~ o +  ~ qi(x, t) cbi(x/h) (7.3) 
i = 1  

Note that if there are more than two components in the system, then 
c(x, t), q0(x,t), and c1,~(x/h) must be vector functions. However, the 
~?i(x, t), i t  {1 ..... m}, should be scalar functions. Thus the concentration 
will be assumed to be a slowly varying linear combination of all the phases. 
The rationale for this ansatz is the principle of effective separation of scales. 
Near equilibrium the system may be expected to be dominated in most 
regions by one phase only, and all the ~/i, i t  {1 ..... m}, except one may be 
expected to be nearly vanishing. In interfacial regions, the description will 
be less simple and a combination of the various phases will be necessary in 
order to give an adequate description of the phase dynamics. Ultimately 
the relative sizes of the various q~ must be determined by the underlying 
dynamics. 

Earlier descriptions of order~lisorder phase transitions have also been 
given in terms of a linear combination of phases (e.g., refs. 14 and 15) and 
for order~lisorder transitions on BCC lattices such a description would be 

"P = Po + rl cos(nx/h ) cos(Try/h) cos(nz/h ) (7.4) 

where r/ is the order parameter. Essentially our ansatz is a slowly varying 
variant of (7.4) and includes the average concentration as an additional 
slowly varying variable. We shall speak of slowly varying variables even 
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though they indeed vary on an (9(1) scale, since they are slowly varying 
relative to the scale of the phase ordering. 

We must now discuss how the q,.(x, t) are to be determined as the con- 
tinuum limit of some linear combination of the values of the concentration 
at the lattice vertices. In the following discussion, we assume for simplicity 
that the system contains no more than two components, in which case we 
may set ~o = 1. Now, since the functions ~i,  i =  1 ..... m, represent ordered 
phases on a fixed lattice, it is possible to associate with each phase a unit 
cell of a superlattice; i.e., the periodic unit cell of the phase. Since there are 
a finite number of phases, we may determine the smallest possible "unit" 
cell which accommodates the set of all phases ~. This may be accom- 
plished as long as we do not allow for distortions of the underlying lattice. 

By the assumptions stated above, the functions q;(x, t) are slowly 
varying; hence, since the dimensions of the lattice unit cell are O(h), we 
may assume the r/i(x, t) to be roughly constant over the unit cell. On the 
other hand, the function c(x, t) may be expected to be rapidly varying. 
Assume now that n = n(x) represents the vertex of the lattice located closest 
to x; then, employing the above assumptions, we deduce that (7.3) may be 
approximated by 

c(x, t) = qo(n, t) + ~ qi(n, t) ~i(x/h) (7.5) 
i 

Let us now define an inner product by 

(c, ~ ; )  = ~ e(n, t) ~,(n/h) (7.6) 
I I E Q  

where s represents the unit cell with the point x approximately at its 
center. Once c(x) is known, m + 1 l inear equations may be obtained for 
the r/i, i =  0 ..... m, by taking the appropriate inner products. While we will 
not elaborate on this process in detail here, it is easy to check that for the 
case of phase separation and ordering of binary alloys on a BCC lattice, 
this prescription reduces to the definitions of ui(n) and v~(n) given in (5.1) 
if the unit cell s is taken to include a vertex of the lattice and its nearest 
neighbors. Note also that 

(c,  1) = r/o(n , t ) + ~  v/,(n, t ) ( ~ ,  1) (7.7) 
i 

Thus if the ~ have been constructed so as to be orthogonal to 1, then 
~/o(n, t) will represent the average concentration(s) and will be a conserved 
variable(s). Otherwise the linear combination of variables which appear on 
the right-hand side of (7.7) will represent the average concentration(s). 
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We now wish to return and understand the difference between the 
variables u;(n) and vi(n) and the variables a(n) and b(n). Suppose we were 
to return to (7.6) and redefine the inner product by integrating over some 
multiple of the unit cell which we denote by f2'. Then again a set of m + 1 
equations would result, which would not necessarily coincide with the 
definitions for the ~/i as occurred previously. The advantage of using a mul- 
tiple of the unit cell is that the structure of the equilibria is more accurately 
represented. The disadvantage in using the larger cell is that the interfaces, 
which may in fact be physically quite sharp, become "blurred" over a larger 
region. We will not venture here into the problematics of taking a true 
hydrodynamic limit. 1~61 While we could have used definitions of variables 
a(n) and b(n) based on multiples of the unit cell, these variables have 
indeed been defined here by taking linear combinations of the variables u;(n) 
and v;(n) and their translates, which has roughly the same overall effect. 

Although we will not elaborate here on the possibility of using other 
choices of ~i, clearly if the ~i are given in terms of Fourier modes, then 
the above procedure reduces to inverting aofinite Fourier transform. As dif- 
ferent variants are used for the functions ~i, the precise definition of the 
functions r/; changes accordingly. 

Once the variables have been decided upon, then by going through 
either of the formalisms outlined in Section 5 and 6, a set of m + 1 equa- 
tions will be obtained. Clearly it is to be expected that there will be one 
conserved equation and m nonconserved equations. If the ~ are chosen 
appropriately, then this method should be capable of capturing anisotropy 
effects, if they occur in the system. 

Lastly we remark that if systems with k components are treated, where 
k > 2, then a similar approach should be valid. In this case, however, k -  1 
conserved equations will result, in addition to the nonconserved equations 
which arise from consideration of the phase variables. 

8. C O N C L U S I O N  

We began with a system of discrete equations for describing the 
dynamics on a BCC lattice of phase separation into two phases, where the 
phases may be ordered. The low-temperature behavior splits into five 
parameter regimes. We have focused on parameter region 2, which should 
describe aspects of alloys, for which at low temperatures a terminal BCC 
solid solution coexists in equilibrium with a structure designated as B2, 
structure type CsC1 or CuZn. We have taken continuum limits of these 
equations. Much hinges on what variables are chosen for the continuizing. 
The derivation is not rigorous in that a quasicontinuum limit has been 
taken and only the leading representative terms are maintained. Many 



908 Cahn and Novick-Cohen 

open questions remain to be addressed. However, the structure of our 
equations is more transparent than in refs. 3 and 4. Even though the 
discrete system of equations describes a single diffusional process, the 
continuization results in a system of partial differential equations, a bistable 
reaction-diffusion equation for the order parameter coupled to a Cahn-  
Hilliard equation for the composition. Because there is only one underlying 
process, the kinetic coefficients in these two equations are linked. 

To guarantee well-posedness, it suffices to require that the diffusion 
coefficient in reaction-diffusion equations and the coefficient of the fourth- 
order term in the Cahn-Hilliard equation be positive. We have shown that 
well-posedness, while clearly necessary, is not sufficient for accurate con- 
tinuizing. Section 4 shows as expected, that continuizing with respect to 
a mean composition cannot describe ordering. Depending on the param- 
eters, the evolution equations are either ill-posed or lead to a single 
homogeneous phase or separation into two terminal phases. But there the 
homogeneous phase is almost never a low-temperature solution of the dis- 
crete equations from which the partial differential equation was derived. 
Furthermore, the parameter range leading to phase separation into two 
terminal phases was much expanded in the partial differential equation 
from its domain, region 1, in the discrete equations. The processes 
described by the partial differential equation are constrained to avoid 
ordering, and will describe a phase separation without ordering when that 
will lower the free energy. The well-posed evolution equation in terms of 
mean concentration are clearly inadequate. 

The simplest sets of variables that could describe both ordering into a 
B2 structure and phase separation were local means of composition and 
combinations with the structure of second differences which behave like 
order parameters. Continuizing leads naturally to a pair of quite different 
equations; a second-order reaction-diffusion or Ginzburg-Landau equation 
for an order parameter that is not conserved, and a fourth-order Cahn- 
Hilliard equation for a conserved composition. Because of the choice of the 
order parameter, this set of equations was not expected to be accurate in 
parameter regions 3, 4, and 5. Indeed they are ill-posed in those regions 
and in part of region 1. However, if we limit our considerations to those 
parameter regions in which the resultant equations are well-posed, then we 
see that at low temperatures, phase separation into two terminal phases is 
predicted in the subset of region 1 in which the equations are well-posed, 
and phase separation into a terminal phase and B2 is predicted in region 2 
where our equations are well-posed. 

We have demonstrated with these variables that the order of con- 
tinuizing can be interchanged to give roughly the same results. Thus the 
discrepancy between the discrete and continuum equations derived from 
them lies elsewhere, in the fact that only the leading representative terms 
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are  ma in t a ined  in these q u a s i c o n t i n u u m  limits. In  Sect ion  7, we have  

ske tched h o w  this a p p r o a c h  m a y  be ex tended  f rom m u l t i c o m p o n e n t  mul t i -  
phase  systems. In  f o r t h c o m i n g  papers  c9" ~7~ fur ther  ana ly t ic  as well  as physical  

features o f  the equa t ions  der ived  here will be discussed. 
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